\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - 2D Arrangements
Arrangement_on_surface_2/global_insertion.cpp
// Using the global insertion functions (incremental and aggregated).
#include <CGAL/Cartesian.h>
#include <CGAL/Quotient.h>
#include <CGAL/MP_Float.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_naive_point_location.h>
#include "arr_print.h"
typedef CGAL::Quotient<CGAL::MP_Float> Number_type;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;
int main ()
{
// Construct the arrangement of five intersecting segments.
Arrangement_2 arr;
Segment_2 S1 [5];
S1[0] = Segment_2 (Point_2 (1, 2.5), Point_2 (4, 5));
S1[1] = Segment_2 (Point_2 (1, 2.5), Point_2 (6, 2.5));
S1[2] = Segment_2 (Point_2 (1, 2.5), Point_2 (4, 0));
S1[3] = Segment_2 (Point_2 (4, 5), Point_2 (6, 2.5));
S1[4] = Segment_2 (Point_2 (4, 0), Point_2 (6, 2.5));
insert_non_intersecting_curves (arr, S1, S1 + 5);
// Perform an incremental insertion of a single overlapping segment.
Naive_pl pl (arr);
insert (arr, Segment_2 (Point_2 (0, 2.5), Point_2 (4, 2.5)), pl);
// Aggregately insert an additional set of five segments.
Segment_2 S2 [5];
S2[0] = Segment_2 (Point_2 (0, 4), Point_2 (6, 5));
S2[1] = Segment_2 (Point_2 (0, 3), Point_2 (6, 4));
S2[2] = Segment_2 (Point_2 (0, 2), Point_2 (6, 1));
S2[3] = Segment_2 (Point_2 (0, 1), Point_2 (6, 0));
S2[4] = Segment_2 (Point_2 (6, 1), Point_2 (6, 4));
insert (arr, S2, S2 + 5);
// Print the size of the arrangement.
std::cout << "The arrangement size:" << std::endl
<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;
return 0;
}