\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - Halfedge Data Structures
Bibliography
[1]

B. G. Baumgart. A polyhedron representation for computer vision. In Proc. AFIPS Natl. Comput. Conf., volume 44, pages 589–596. AFIPS Press, Alrington, Va., 1975.

[2]

Heinzgerd Bendels, Dieter W. Fellner, and Sven Havemann. Modellierung der grundlagen: Erweiterbare datenstrukturen zur modellierung und visualisierung polygonaler welten. In D. W. Fellner, editor, Modeling – Virtual Worlds – Distributed Graphics, pages 149–157, Bad Honnef / Bonn, 27.–28. November 1995.

[3]

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[4]

Leonidas J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans. Graph., 4(2):74–123, April 1985.

[5]

L. Kettner. Using generic programming for designing a data structure for polyhedral surfaces. Comput. Geom. Theory Appl., 13:65–90, 1999.

[6]

M. Mäntylä. An Introduction to Solid Modeling. Computer Science Press, Rockville, MD, 1988.

[7]

D. E. Muller and F. P. Preparata. Finding the intersection of two convex polyhedra. Theoret. Comput. Sci., 7:217–236, 1978.

[8]

Alexander Stepanov and Meng Lee. The standard template library, October 1995.

[9]

K. Weiler. Edge-based data structures for solid modeling in a curved surface environment. IEEE Comput. Graph. Appl., 5(1):21–40, 1985.