\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - Principal Component Analysis
Principal_component_analysis/barycenter.cpp
// Example program for the barycenter() function for 2D and 3D points.
#include <CGAL/Simple_cartesian.h>
#include <CGAL/barycenter.h>
#include <vector>
#include <iostream>
#include <utility>
typedef double FT;
typedef K::Point_2 Point_2;
typedef K::Point_3 Point_3;
int main()
{
// barycenter of 2D weighted points
std::vector<std::pair<Point_2, FT> > points_2;
points_2.push_back(std::make_pair(Point_2(1.0, 0.0), 1.0));
points_2.push_back(std::make_pair(Point_2(2.0, 2.0), 2.0));
points_2.push_back(std::make_pair(Point_2(3.0, 5.0), -2.0));
Point_2 c2 = CGAL::barycenter(points_2.begin(), points_2.end());
std::cout << c2 << std::endl;
// barycenter of 3D weighted points
std::vector<std::pair<Point_3, FT> > points_3;
points_3.push_back(std::make_pair(Point_3(1.0, 0.0, 0.5), 1.0));
points_3.push_back(std::make_pair(Point_3(2.0, 2.0, 1.2), 2.0));
points_3.push_back(std::make_pair(Point_3(3.0, 5.0, 4.5), -5.0));
Point_3 c3 = CGAL::barycenter(points_3.begin(), points_3.end());
std::cout << c3 << std::endl;
return 0;
}