\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.10.1 - 2D Periodic Triangulations
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Bibliographic References
[1]

Manuel Caroli and Monique Teillaud. Computing 3D periodic triangulations. In Proceedings 17th European Symposium on Algorithms, volume 5757 of Lecture Notes in Computer Science, pages 37–48, 2009. Full version available as INRIA Research Report 6823 http://hal.inria.fr/inria-00356871.

[2]

Manuel Caroli. Triangulating Point Sets in Orbit Spaces. Thèse de doctorat en sciences, Université de Nice-Sophia Antipolis, France, 2010.

[3]

Olivier Devillers and Monique Teillaud. Perturbations and vertex removal in a 3D Delaunay triangulation. In Proc. 14th ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 313–319, 2003.

[4]

Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a triangulation. Internat. J. Found. Comput. Sci., 13:181–199, 2002.