\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.10.1 - 3D Surface Subdivision Methods
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Subdivision_method_3/Customized_subdivision.cpp
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Subdivision_method_3.h>
#include <cstdio>
#include <iostream>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
using namespace std;
using namespace CGAL;
// ======================================================================
template <class Poly>
class WLoop_mask_3 {
typedef Poly Polyhedron;
typedef typename Polyhedron::Vertex_iterator Vertex_iterator;
typedef typename Polyhedron::Halfedge_iterator Halfedge_iterator;
typedef typename Polyhedron::Facet_iterator Facet_iterator;
typedef typename Polyhedron::Halfedge_around_facet_circulator
Halfedge_around_facet_circulator;
typedef typename Polyhedron::Halfedge_around_vertex_circulator
Halfedge_around_vertex_circulator;
typedef typename Polyhedron::Traits Traits;
typedef typename Traits::Kernel Kernel;
typedef typename Kernel::FT FT;
typedef typename Kernel::Point_3 Point;
typedef typename Kernel::Vector_3 Vector;
public:
void edge_node(Halfedge_iterator eitr, Point& pt) {
Point& p1 = eitr->vertex()->point();
Point& p2 = eitr->opposite()->vertex()->point();
Point& f1 = eitr->next()->vertex()->point();
Point& f2 = eitr->opposite()->next()->vertex()->point();
pt = Point((3*(p1[0]+p2[0])+f1[0]+f2[0])/8,
(3*(p1[1]+p2[1])+f1[1]+f2[1])/8,
(3*(p1[2]+p2[2])+f1[2]+f2[2])/8 );
}
void vertex_node(Vertex_iterator vitr, Point& pt) {
double R[] = {0.0, 0.0, 0.0};
Point& S = vitr->point();
Halfedge_around_vertex_circulator vcir = vitr->vertex_begin();
std::size_t n = circulator_size(vcir);
for (std::size_t i = 0; i < n; i++, ++vcir) {
Point& p = vcir->opposite()->vertex()->point();
R[0] += p[0]; R[1] += p[1]; R[2] += p[2];
}
if (n == 6) {
pt = Point((10*S[0]+R[0])/16, (10*S[1]+R[1])/16, (10*S[2]+R[2])/16);
} else if (n == 3) {
double B = (5.0/8.0 - std::sqrt(3+2*std::cos(6.283/n))/64.0)/n;
double A = 1-n*B;
pt = Point((A*S[0]+B*R[0]), (A*S[1]+B*R[1]), (A*S[2]+B*R[2]));
} else {
double B = 3.0/8.0/n;
double A = 1-n*B;
pt = Point((A*S[0]+B*R[0]), (A*S[1]+B*R[1]), (A*S[2]+B*R[2]));
}
}
void border_node(Halfedge_iterator eitr, Point& ept, Point& vpt) {
Point& ep1 = eitr->vertex()->point();
Point& ep2 = eitr->opposite()->vertex()->point();
ept = Point((ep1[0]+ep2[0])/2, (ep1[1]+ep2[1])/2, (ep1[2]+ep2[2])/2);
Halfedge_around_vertex_circulator vcir = eitr->vertex_begin();
Point& vp1 = vcir->opposite()->vertex()->point();
Point& vp0 = vcir->vertex()->point();
Point& vp_1 = (--vcir)->opposite()->vertex()->point();
vpt = Point((vp_1[0] + 6*vp0[0] + vp1[0])/8,
(vp_1[1] + 6*vp0[1] + vp1[1])/8,
(vp_1[2] + 6*vp0[2] + vp1[2])/8 );
}
};
int main(int argc, char **argv) {
if (argc != 2) {
cout << "Usage: Customized_subdivision d < filename" << endl;
cout << " d: the depth of the subdivision (0 < d < 10)" << endl;
cout << " filename: the input mesh (.off)" << endl;
return 0;
}
int d = argv[1][0] - '0';
Polyhedron P;
cin >> P; // read the .off
Subdivision_method_3::PTQ(P, WLoop_mask_3<Polyhedron>(), d);
cout << P; // write the .off
return 0;
}