\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.11.1 - 2D Arrangements
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Arrangement_on_surface_2/incremental_insertion.cpp
// Using the global incremental insertion functions.
#include <CGAL/Cartesian.h>
#include <CGAL/Quotient.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_walk_along_line_point_location.h>
#include "arr_print.h"
typedef CGAL::Quotient<int> Number_type;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;
int main()
{
// Construct the arrangement of five intersecting segments.
Arrangement_2 arr;
Walk_pl pl(arr);
Segment_2 s1(Point_2(1, 0), Point_2(2, 4));
Segment_2 s2(Point_2(5, 0), Point_2(5, 5));
Segment_2 s3(Point_2(1, 0), Point_2(5, 3));
Segment_2 s4(Point_2(0, 2), Point_2(6, 0));
Segment_2 s5(Point_2(3, 0), Point_2(5, 5));
insert(arr, s3, pl);
insert(arr, s4, pl);
insert(arr, s5, pl);
// Print the size of the arrangement.
std::cout << "The arrangement size:" << std::endl
<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;
// Perform a point-location query on the resulting arrangement and print
// the boundary of the face that contains it.
Point_2 q(4, 1);
Walk_pl::result_type obj = pl.locate(q);
Arrangement_2::Face_const_handle f;
CGAL_assertion_code(bool success =) CGAL::assign(f, obj);
CGAL_assertion(success);
std::cout << "The query point (" << q << ") is located in: ";
print_face<Arrangement_2>(f);
return 0;
}