\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.11.2 - 2D and Surface Function Interpolation
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Bibliographic References
[1]

Nina Amenta and Marshall Bern. Surface reconstruction by Voronoi filtering. Discrete Comput. Geom., 22(4):481–504, 1999.

[2]

Jean-Daniel Boissonnat and Julia Flötotto. A local coordinate system on a surface. In Proc. 7th ACM Symposium on Solid Modeling and Applications, 2002.

[3]

J. L. Brown. Systems of coordinates associated with points scattered in the plane. Comput. Aided Design, 14:547–559, 1997.

[4]

G. Farin. Surfaces over Dirichlet tesselations. Comput. Aided Geom. Design, 7:281–292, 1990.

[5]

Julia Flötotto. A coordinate system associated to a point cloud issued from a manifold: definition, properties and applications. Thèse de doctorat en sciences, Université de Nice-Sophia Antipolis, France, 2003.

[6]

Hisamoto Hiyoshi and Kokichi Sugihara. Voronoi-based interpolation with higher continuity. In Proc. 16th Annu. ACM Sympos. Comput. Geom., pages 242–250, 2000.

[7]

B. Piper. Properties of local coordinates based on dirichlet tesselations. Computing Suppl., 8:227–239, 1993.

[8]

R. Sibson. A vector identity for the Dirichlet tesselation. Math. Proc. Camb. Phil. Soc., 87:151–155, 1980.

[9]

R. Sibson. A brief description of natural neighbour interpolation. In Vic Barnet, editor, Interpreting Multivariate Data, pages 21–36. John Wiley & Sons, Chichester, 1981.