\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.11.3 - Algebraic Foundations
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Algebraic_foundations/interoperable.cpp
#include <CGAL/basic.h>
#include <CGAL/Coercion_traits.h>
#include <CGAL/IO/io.h>
// this is an implementation for ExplicitInteroperable types
// the result type is determined via Coercion_traits<A,B>
template <typename A, typename B>
binary_func(const A& a , const B& b){
// check for explicit interoperability
CGAL_static_assertion((CT::Are_explicit_interoperable::value));
// CT::Cast is used to to convert both types into the coercion type
typename CT::Cast cast;
// all operations are performed in the coercion type
return cast(a)*cast(b);
}
int main(){
// Function call for the interoperable types
std::cout<< binary_func(double(3), int(5)) << std::endl;
// Note that Coercion_traits is symmetric
std::cout<< binary_func(int(3), double(5)) << std::endl;
return 0;
}