\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.11.3 - 2D Arrangements
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Arrangement_on_surface_2/circular_arcs.cpp
// Constructing an arrangement of various circular arcs and line segments.
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_circle_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
typedef Kernel::Circle_2 Circle_2;
typedef Kernel::Segment_2 Segment_2;
typedef Traits_2::CoordNT CoordNT;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::Curve_2 Curve_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;
int main()
{
std::list<Curve_2> curves;
// Create a circle centered at the origin with squared radius 2.
Circle_2 circ1 = Circle_2(c1, CGAL::Exact_rational(2));
curves.push_back(Curve_2(circ1));
// Create a circle centered at (2,3) with radius 3/2 - note that
// as the radius is rational we use a different curve constructor.
curves.push_back(Curve_2(c2, CGAL::Exact_rational(3, 2)));
// Create a segment of the line (y = x) with rational endpoints.
Segment_2 seg3 = Segment_2(s3, t3);
curves.push_back(Curve_2(seg3));
// Create a line segment with the same supporting line (y = x), but
// having one endpoint with irrational coefficients.
CoordNT sqrt_15 = CoordNT(0, 1, 15); // = sqrt(15)
Point_2 s4 = Point_2(3, 3);
Point_2 t4 = Point_2(sqrt_15, sqrt_15);
curves.push_back(Curve_2(seg3.supporting_line(), s4, t4));
// Create a circular arc that correspond to the upper half of the
// circle centered at (1,1) with squared radius 3. We create the
// circle with clockwise orientation, so the arc is directed from
// (1 - sqrt(3), 1) to (1 + sqrt(3), 1).
Circle_2 circ5 = Circle_2(c5, 3, CGAL::CLOCKWISE);
CoordNT one_minus_sqrt_3 = CoordNT(1, -1, 3);
CoordNT one_plus_sqrt_3 = CoordNT(1, 1, 3);
Point_2 s5 = Point_2(one_minus_sqrt_3, CoordNT(1));
Point_2 t5 = Point_2(one_plus_sqrt_3, CoordNT(1));
curves.push_back(Curve_2(circ5, s5, t5));
// Create a circular arc of the unit circle, directed clockwise from
// (-1/2, sqrt(3)/2) to (1/2, sqrt(3)/2). Note that we orient the
// supporting circle accordingly.
CoordNT sqrt_3_div_2 = CoordNT(CGAL::Exact_rational(0),
Point_2 s6 = Point_2(CGAL::Exact_rational(-1, 2), sqrt_3_div_2);
Point_2 t6 = Point_2(CGAL::Exact_rational(1, 2), sqrt_3_div_2);
curves.push_back(Curve_2(c6, 1, CGAL::CLOCKWISE, s6, t6));
// Create a circular arc defined by two endpoints and a midpoint,
// all having rational coordinates. This arc is the upper-right
// quarter of a circle centered at the origin with radius 5.
curves.push_back(Curve_2(s7, mid7, t7));
// Construct the arrangement of the curves.
Arrangement_2 arr;
insert(arr, curves.begin(), curves.end());
// Print the size of the arrangement.
std::cout << "The arrangement size:" << std::endl
<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;
return 0;
}