\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.11.3 - 2D Minkowski Sums
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Bibliographic References
[1]

P. K. Agarwal, E. Flato, and D. Halperin. Polygon decomposition for efficient construction of Minkowski sums. Computational Geometry: Theory and Applications, 21:39–61, 2002.

[2]

Alon Baram, Efi Fogel, Dan Halperin, Michael Hemmer, and Sebastian Morr. Exact minkowski sums of polygons with holes. In Algorithms-ESA 2015, pages 71–82. Springer, 2015.

[3]

Evan Behar and Jyh-Ming Lien. Fast and robust 2d minkowski sum using reduced convolution. In Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), San Francisco, CA, Sep. 2011.

[4]

Bernard Chazelle and D. P. Dobkin. Optimal convex decompositions. In G. T. Toussaint, editor, Computational Geometry, pages 63–133. North-Holland, Amsterdam, Netherlands, 1985.

[5]

Eyal Flato and Dan Halperin. Robust and efficient construction of planar Minkowski sums. In Abstracts 16th European Workshop Comput. Geom., pages 85–88. Ben-Gurion University of the Negev, 2000.

[6]

Daniel H. Greene. The decomposition of polygons into convex parts. In Franco P. Preparata, editor, Computational Geometry, volume 1 of Adv. Comput. Res., pages 235–259. JAI Press, Greenwich, Conn., 1983.

[7]

Leonidas J. Guibas, L. Ramshaw, and J. Stolfi. A kinetic framework for computational geometry. In Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci., pages 100–111, 1983.

[8]

S. Hertel and K. Mehlhorn. Fast triangulation of simple polygons. In Proc. 4th Internat. Conf. Found. Comput. Theory, volume 158 of Lecture Notes Comput. Sci., pages 207–218. Springer-Verlag, 1983.