\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.11.3 - CGAL and Solvers
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Solver_interface/singular_value_decomposition.cpp
#ifdef CGAL_EIGEN3_ENABLED
#include <CGAL/Eigen_matrix.h>
#include <CGAL/Eigen_vector.h>
#include <CGAL/Eigen_svd.h>
typedef CGAL::Eigen_svd Svd;
#endif
typedef Svd::FT FT;
typedef Svd::Vector Eigen_vector;
typedef Svd::Matrix Eigen_matrix;
int main(void)
{
std::size_t degree = 3;
Eigen_vector B (degree);
Eigen_matrix M (degree, degree);
// Fill B and M with random numbers
for (std::size_t i = 0; i < degree; ++ i)
{
B.set (i, rand());
for (std::size_t j = 0; j < degree; ++ j)
M.set (i, j, rand());
}
// Solve MX=B
std::cout << Svd::solve(M, B) << std::endl;
// Print result
std::cout << "Solution of SVD = [ ";
for (std::size_t i = 0; i < degree; ++ i)
std::cout << B.vector()[i] << " ";
std::cout << "]" << std::endl;
return 0;
}