\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.11 - 3D Periodic Triangulations
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Periodic_3_triangulation_3/simple_regular_example.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Periodic_3_regular_triangulation_traits_3.h>
#include <CGAL/Periodic_3_regular_triangulation_3.h>
#include <CGAL/periodic_3_triangulation_3_io.h>
#include <iostream>
#include <fstream>
#include <cassert>
#include <list>
#include <vector>
typedef P3RT3::Bare_point Point;
typedef P3RT3::Weighted_point Weighted_point;
typedef P3RT3::Iso_cuboid Iso_cuboid;
typedef P3RT3::Vertex_handle Vertex_handle;
typedef P3RT3::Cell_handle Cell_handle;
typedef P3RT3::Locate_type Locate_type;
int main(int, char**)
{
Iso_cuboid domain(-1,-1,-1, 2,2,2); // the cube for the periodic domain
// construction from a list of weighted points :
std::list<Weighted_point> L;
L.push_front(Weighted_point(Point(0,0,0), 0.01));
L.push_front(Weighted_point(Point(1,0,0), 0.02));
L.push_front(Weighted_point(Point(0,1,0), 0.03));
P3RT3 T(L.begin(), L.end(), domain); // put the domain with the constructor
P3RT3::size_type n = T.number_of_vertices();
// insertion from a vector :
std::vector<Weighted_point> V(3);
V[0] = Weighted_point(Point(0,0,1), 0.04);
V[1] = Weighted_point(Point(1,1,1), 0.05);
V[2] = Weighted_point(Point(-1,-1,-1), 0.06);
n = n + T.insert(V.begin(), V.end());
assert( n == 6 ); // 6 points have been inserted
assert( T.is_valid() ); // checking validity of T
Locate_type lt;
int li, lj;
Weighted_point p(Point(0,0,0), 1.);
Cell_handle c = T.locate(p, lt, li, lj);
// p is the vertex of c of index li :
assert( lt == P3RT3::VERTEX );
assert( c->vertex(li)->point() == p );
Vertex_handle v = c->vertex( (li+1)&3 );
// v is another vertex of c
Cell_handle nc = c->neighbor(li);
// nc = neighbor of c opposite to the vertex associated with p
// nc must have vertex v :
int nli;
assert( nc->has_vertex( v, nli ) );
// nli is the index of v in nc
// writing file output
std::ofstream oFileT("output_regular.tri", std::ios::out); // as a .tri file
oFileT << T;
std::ofstream to_off("output_regular.off");
CGAL::write_triangulation_to_off(to_off, T);
std::ofstream d_to_off("output_regular_dual.off"); // as a .off file
draw_dual_to_off(d_to_off, T);
// reading file output
P3RT3 T1;
std::ifstream iFileT("output_regular.tri",std::ios::in);
iFileT >> T1;
assert( T1.is_valid() );
assert( T1.number_of_vertices() == T.number_of_vertices() );
assert( T1.number_of_cells() == T.number_of_cells() );
return 0;
}