\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.11 - dD Spatial Searching
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Spatial_searching/using_fair_splitting_rule.cpp
#include <CGAL/Simple_cartesian.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/Search_traits_2.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <cmath>
typedef R::Point_2 Point_d;
typedef CGAL::Random_points_in_square_2<Point_d> Random_points_iterator;
typedef CGAL::Counting_iterator<Random_points_iterator> N_Random_points_iterator;
typedef CGAL::Search_traits_2<R> Traits;
typedef CGAL::Fair<Traits> Fair;
typedef Neighbor_search::Tree Tree;
int main() {
const unsigned int N = 1000;
// generator for random data points in the square ( (-1,-1), (1,1) )
Random_points_iterator rpit( 1.0);
Fair fair(5); // bucket size=5
// Insert number_of_data_points in the tree
Tree tree(N_Random_points_iterator(rpit,0),
N_Random_points_iterator(N),
fair);
Point_d query(0,0);
// Initialize the search structure, and search all N points
Neighbor_search search(tree, query, N);
// report the N nearest neighbors and their distance
// This should sort all N points by increasing distance from origin
for(Neighbor_search::iterator it = search.begin(); it != search.end(); ++it){
std::cout << it->first << " "<< std::sqrt(it->second) << std::endl;
}
return 0;
}