\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - 2D Arrangements

Pankaj K. Agarwal and Micha Sharir. Arrangements and their applications. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, pages 49–119. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.


Eric Berberich, Arno Eigenwillig, Michael Hemmer, Susan Hert, Kurt Mehlhorn, and Elmar Schömer. A computational basis for conic arcs and boolean operations on conic polygons. In Rolf Möhring and Rajeev Raman, editors, Algorithms - ESA 2002: 10th Annual European Symposium, volume 2461 of Lecture Notes in Computer Science, pages 174–186, Rome, Italy, September 2002. Springer.


Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd edition, 2000.


E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.


Dan Halperin. Arrangements. In Jacob E. Goodman and Joseph O'Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 24, pages 529–562. Chapman & Hall/CRC, 2nd edition, 2004.


Idit Haran and Dan Halperin. Efficient point location in cgal arrangements using landmarks, 2005.


M. Hemmer, M. Kleinbort, and D. Halperin. Improved Implementation of Point Location in General Two-Dimensional Subdivisions. ArXiv e-prints, May 2012.


K. Mulmuley. A fast planar partition algorithm, I. J. Symbolic Comput., 10(3-4):253–280, 1990.


David R. Musser and Atul Saini. STL Tutorial and Reference Guide: C++ Programming with the Standard Template Library. Addison-Wesley, 1996.


W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C++. Cambridge University Press, 2nd edition, 2002.


R. Seidel. A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Comput. Geom. Theory Appl., 1(1):51–64, 1991.