\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - Estimation of Local Differential Properties of Point-Sampled Surfaces
Bibliography
[1]

F. Cazals and M. Pouget. Estimating differential quantities using polynomial fitting of osculating jets. Computer Aided Geometric Design, 22(2), 2005. Conference version: Symp. on Geometry Processing 2003.

[2]

M. de Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs, NJ, 1976.

[3]

G. Golub and C. van Loan. Matrix Computations. Johns Hopkins Univ. Press, Baltimore, MA, 1983.

[4]

S. Petitjean. A survey of methods for recovering quadrics in triangle meshes. ACM Computing Surveys, 34(2), 2001.