\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.2 - 2D and 3D Linear Geometry Kernel
Kernel_23/intersections.cpp
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/iterator.h>
#include <CGAL/point_generators_2.h>
#include <boost/bind.hpp>
typedef K::Point_2 Point;
typedef K::Segment_2 Segment;
typedef CGAL::Random_points_on_segment_2<Point,Pt_creator> P1;
typedef CGAL::Random_points_on_circle_2<Point,Pt_creator> P2;
struct Intersector{
const Segment& s;
K::Intersect_2 intersect;
Intersector(const Segment& seg): s(seg) {}
result_type
operator() ( const Segment& other) const
{
return intersect(s, other);
}
};
int main()
{
std::vector<Segment> input;
// Prepare point generator for the horizontal segment, length 200.
P1 p1( Point(-100,0), Point(100,0));
// Prepare point generator for random points on circle, radius 250.
P2 p2( 250);
// Create segments.
Seg_iterator g( p1, p2);
CGAL::cpp11::copy_n( g, 200, std::back_inserter(input));
// splitting results with Dispatch_output_iterator
std::vector<Point> points;
std::vector<Segment> segments;
std::back_insert_iterator<std::vector<Segment> > > >
Dispatcher;
Dispatcher disp = CGAL::dispatch_output<Point,Segment>( std::back_inserter(points),
std::back_inserter(segments) );
// intersects the first segment of input with all other segments
// The resulting points or segments are written in the vectors with the same names
std::transform( input.begin(), input.end(), disp,
Intersector(input.front()) );
std::cout << "Point intersections: " << points.size() << std::endl;
std::cout << "Segment intersections: " << segments.size() << std::endl;
return 0;
}