\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.2 - 3D Periodic Triangulations
Periodic_3_triangulation_3/large_point_set.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Periodic_3_Delaunay_triangulation_traits_3.h>
#include <CGAL/Periodic_3_Delaunay_triangulation_3.h>
#include <CGAL/Random.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Timer.h>
#include <iostream>
#include <vector>
typedef P3DT3::Point Point;
int main(int, char**)
{
CGAL::Timer t;
CGAL::Random random(7);
CGAL::Random_points_in_cube_3<Point, Creator> in_cube(.5, random);
int n = 10000;
std::vector<Point> pts;
P3DT3 PT1, PT2, PT3;
// Generating n random points
for (int i=0 ; i < n ; i++) {
Point p = *in_cube;
in_cube++;
pts.push_back(Point(p.x()+.5,p.y()+.5,p.z()+.5));
}
// Standard insertion
t.start();
for (int i=0 ; i < n ; i++) {
PT1.insert(pts[i]);
}
t.stop();
std::cout<<" Time: "<<t.time()<<" sec. (Standard insertion)"<<std::endl;
t.reset();
// Iterator range insertion using spatial sorting but no dummy points
t.start();
PT2.insert(pts.begin(), pts.end()); // third parameter defaults to false
t.stop();
std::cout<<" Time: "<<t.time()<<" sec. (with spatial sorting)"<<std::endl;
t.reset();
// Iterator range insertion using spatial sorting and dummy point heuristic
t.start();
PT3.insert(pts.begin(), pts.end(), true);
t.stop();
std::cout<<" Time: "<<t.time()<<" sec. (Dummy point heuristic)"<<std::endl;
return 0;
}