\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.2 - dD Triangulations
regular_triangulation.cpp
#include <CGAL/Epick_d.h>
#include <CGAL/point_generators_d.h>
#include <CGAL/Regular_triangulation.h>
#include <CGAL/assertions.h>
#include <iostream>
#include <iterator>
#include <vector>
const int D = 5; // Dimension
const int N = 100; // Number of points
typedef K::Point_d Bare_point;
typedef K::Weighted_point_d Weighted_point;
int main()
{
// Instantiate a random point generator
CGAL::Random rng(0);
typedef CGAL::Random_points_in_cube_d<Bare_point> Random_points_iterator;
Random_points_iterator rand_it(D, 1.0, rng);
// Generate N random points
std::vector<Weighted_point> points;
for (int i = 0; i < N; ++i)
points.push_back(Weighted_point(*rand_it++, rng.get_double(0., 10.)));
T t(D);
CGAL_assertion(t.empty());
// Insert the points in the triangulation
t.insert(points.begin(), points.end());
CGAL_assertion( t.is_valid() );
std::cout << "Regular triangulation successfully computed: "
<< t.number_of_vertices() << " vertices, "
<< t.number_of_finite_full_cells() << " finite cells."
<< std::endl;
return 0;
}