\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12 - 2D Segment Delaunay Graphs
Bibliography
[1]

H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient dynamic filters for computational geometry. Discrete Applied Mathematics, 109:25–47, 2001.

[2]

C. Burnikel. Exact Computation of Voronoi Diagrams and Line Segment Intersections. Ph.D thesis, Universität des Saarlandes, March 1996.

[3]

Olivier Devillers. The Delaunay hierarchy. Internat. J. Found. Comput. Sci., 13:163–180, 2002.

[4]

Menelaos I. Karavelas. A robust and efficient implementation for the segment Voronoi diagram. In Proc. Internat. Symp. on Voronoi diagrams in Science and Engineering (VD2004), pages 51–62, 2004.

[5]

Rolf Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of Lecture Notes Comput. Sci.. Springer-Verlag, 1989.