\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12 - 3D Surface Subdivision Methods
Bibliography
[1]

E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design, 10:350–355, 1978.

[2]

Daniel Doo and Malcolm Sabin. Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design, 10(6):356–360, 1978.

[3]

Leif Kobbelt. sqrt 3-subdivision. In Computer Graphics (Proc. SIGGRAPH '00), volume 34, pages 103–112, 2000.

[4]

Charles Loop. Smooth subdivision surfaces based on triangles. Master's thesis, University of Utah, 1987.

[5]

Le-Jeng Shiue and Jörg Peters. Mesh refinement based on euler encoding. In Proceedings of the International Conference on Shape Modeling and Applications 2005, pages 343–348, 2005.

[6]

Joe Warren and Henrik Weimer. Subdivision Methods for Geometric Design. Morgan Kaufmann Publishers, New York, 2002.