\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13.1 - 3D Periodic Triangulations
Periodic_3_triangulation_3/geometric_access.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Periodic_3_Delaunay_triangulation_traits_3.h>
#include <CGAL/Periodic_3_Delaunay_triangulation_3.h>
typedef Gt::Point_3 Point;
typedef Gt::Triangle_3 Triangle;
typedef P3DT3::Periodic_triangle Periodic_triangle;
typedef P3DT3::Periodic_triangle_iterator Periodic_triangle_iterator;
typedef P3DT3::Iterator_type Iterator_type;
int main(int, char**) {
P3DT3 T;
T.insert(Point(0,0,0));
T.insert(Point(0,0,0.5));
T.insert(Point(0,0.5,0.5));
T.insert(Point(0.5,0,0.5));
Periodic_triangle pt;
Triangle t_bd;
// Extracting the triangles that have a non-empty intersection with
// the original domain of the 1-sheeted covering space
for (Periodic_triangle_iterator ptit = T.periodic_triangles_begin(P3DT3::UNIQUE_COVER_DOMAIN);
ptit != T.periodic_triangles_end(P3DT3::UNIQUE_COVER_DOMAIN); ++ptit) {
pt = *ptit;
if (! (pt[0].second.is_null() && pt[1].second.is_null() && pt[2].second.is_null()) ) {
// Convert the current Periodic_triangle to a Triangle if it is
// not strictly contained inside the original domain.
// Note that this requires EXACT constructions to be exact!
t_bd = T.construct_triangle(pt);
}
}
}