\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13.2 - Advancing Front Surface Reconstruction
Advancing_front_surface_reconstruction/reconstruction_fct.cpp
#include <iostream>
#include <fstream>
#include <algorithm>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Advancing_front_surface_reconstruction.h>
#include <CGAL/tuple.h>
#include <boost/lexical_cast.hpp>
typedef K::Point_3 Point_3;
namespace std {
std::ostream&
operator<<(std::ostream& os, const Facet& f)
{
os << "3 " << f[0] << " " << f[1] << " " << f[2];
return os;
}
}
struct Perimeter {
double bound;
Perimeter(double bound)
: bound(bound)
{}
template <typename AdvancingFront, typename Cell_handle>
double operator() (const AdvancingFront& adv, Cell_handle& c,
const int& index) const
{
// bound == 0 is better than bound < infinity
// as it avoids the distance computations
if(bound == 0){
return adv.smallest_radius_delaunay_sphere (c, index);
}
// If perimeter > bound, return infinity so that facet is not used
double d = 0;
d = sqrt(squared_distance(c->vertex((index+1)%4)->point(),
c->vertex((index+2)%4)->point()));
if(d>bound) return adv.infinity();
d += sqrt(squared_distance(c->vertex((index+2)%4)->point(),
c->vertex((index+3)%4)->point()));
if(d>bound) return adv.infinity();
d += sqrt(squared_distance(c->vertex((index+1)%4)->point(),
c->vertex((index+3)%4)->point()));
if(d>bound) return adv.infinity();
// Otherwise, return usual priority value: smallest radius of
// delaunay sphere
return adv.smallest_radius_delaunay_sphere (c, index);
}
};
int main(int argc, char* argv[])
{
std::ifstream in((argc>1)?argv[1]:"data/half.xyz");
double per = (argc>2)?boost::lexical_cast<double>(argv[2]):0;
std::vector<Point_3> points;
std::vector<Facet> facets;
std::copy(std::istream_iterator<Point_3>(in),
std::istream_iterator<Point_3>(),
std::back_inserter(points));
Perimeter perimeter(per);
points.end(),
std::back_inserter(facets),
perimeter);
std::cout << "OFF\n" << points.size() << " " << facets.size() << " 0\n";
std::copy(points.begin(),
points.end(),
std::ostream_iterator<Point_3>(std::cout, "\n"));
std::copy(facets.begin(),
facets.end(),
std::ostream_iterator<Facet>(std::cout, "\n"));
return 0;
}