CGAL 4.13.2 - Bounding Volumes
|
G. N. Frederickson and D. B. Johnson. Finding kth paths and p-centers by generating and searching good data structures. J. Algorithms, 4:61–80, 1983.
G. N. Frederickson and D. B. Johnson. Generalized selection and ranking: sorted matrices. SIAM J. Comput., 13:14–30, 1984.
Bernd Gärtner and Sven Schönherr. Smallest enclosing ellipses – fast and exact. Serie B – Informatik B 97-03, Freie Universität Berlin, Germany, June 1997.
B. Gärtner and S. Schönherr. Exact primitives for smallest enclosing ellipses. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 430–432, 1997.
Bernd Gärtner and Sven Schönherr. Smallest enclosing circles – an exact and generic implementation in C++. Serie B – Informatik B 98-04, Freie Universität Berlin, Germany, April 1998.
Bernd Gärtner and Sven Schönherr. Smallest enclosing ellipses – an exact and generic implementation in C++. Serie B – Informatik B 98-05, Freie Universität Berlin, Germany, April 1998.
Bernd Gärtner and Svend Schönherr. An efficient, exact, and generic quadratic programming solver for geometric optimization. In Proc. 16th Annu. ACM Sympos. Comput. Geom., pages 110–118, 2000.
B. Gärtner. Fast and robust smallest enclosing balls. In Proc. 7th annu. European Symposium on Algorithms (ESA), volume 1643 of Lecture Notes in Computer Science, pages 325–338. Springer-Verlag, 1999.
M. Hoffmann. A simple linear algorithm for computing rectangular three-centers. In Proc. 11th Canad. Conf. Comput. Geom., pages 72–75, 1999.
L. Khachiyan. Rounding of polytopes in the real number model of computation. Mathematics of Operations Research, 21(2):307–320, 1996.
J. Matou v sek, Micha Sharir, and Emo Welzl. A subexponential bound for linear programming. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 1–8, 1992.
Christian Schwarz, Jürgen Teich, Alek Vainshtein, Emo Welzl, and Brian L. Evans. Minimal enclosing parallelogram with application. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages C34–C35, 1995.
Micha Sharir and Emo Welzl. Rectilinear and polygonal p-piercing and p-center problems. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 122–132, 1996.
G. T. Toussaint. Solving geometric problems with the rotating calipers. In Proc. IEEE MELECON '83, pages A10.02/1–4, 1983.
A. Vainshtein. Finding minimal enclosing parallelograms. Diskretnaya Matematika, 2:72–81, 1990. In Russian.
Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor, New Results and New Trends in Computer Science, volume 555 of Lecture Notes Comput. Sci., pages 359–370. Springer-Verlag, 1991.