\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13.2 - 2D Conforming Triangulations and Meshes

Concepts

conceptConformingDelaunayTriangulationTraits_2
 The concept ConformingDelaunayTriangulationTraits_2 refines the concept ConstrainedDelaunayTriangulationTraits_2 by providing a numeric field type FT, a type Vector_2 and several constructors on Vector_2, Point_2, and a predicate on angles. The field type has to be a model of the concept FieldWithSqrt. This field type and the constructors are used by the conforming algorithm to compute Steiner points on constrained edges. More...
 
conceptDelaunayMeshFaceBase_2
 The concept DelaunayMeshFaceBase_2 refines the concept TriangulationFaceBase_2. It adds two functions giving access to a Boolean marker, that indicates if the face is in the meshing domain or not. More...
 
conceptDelaunayMeshTraits_2
 The concept DelaunayMeshTraits_2 refines the concept ConformingDelaunayTriangulationTraits_2. It provides a construction object Construct_circumcenter_2. More...
 
conceptDelaunayMeshVertexBase_2
 The concept DelaunayMeshVertexBase_2 refines the concept TriangulationVertexBase_2. It adds two functions giving access to a double marker, that is useful for the mesh optimizers to keep the mesh density everywhere while modifying the mesh. More...
 
conceptMeshingCriteria_2
 The concept MeshingCriteria_2 defines the meshing criteria to be used in the algorithm. It provides a predicate Is_bad that tests a triangle according to criteria. The return type of Is_bad is an enum Mesh_2::Face_badness. More...