\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13.2 - 3D Mesh Generation
Bibliography
[1]

Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. Variational tetrahedral meshing. ACM Transactions on Graphics, 24:617–625, 2005. SIGGRAPH '2005 Conference Proceedings.

[2]

Jean-Daniel Boissonnat and Steve Oudot. Provably good sampling and meshing of surfaces. Graphical Models, 67:405–451, 2005.

[3]

Dobrina Boltcheva, Mariette Yvinec, and Jean-Daniel Boissonnat. Feature preserving Delaunay mesh generation from 3d multi- material images. Computer Graphics Forum, 28:1455–14645, 2009. special issue for EUROGRAPHICS Symposium on Geometry Processing.

[4]

Dobrina Boltcheva, Mariette Yvinec, and Jean-Daniel Boissonnat. Mesh generation from 3d multi-material images. In Medical Image Computing and Computer-Assisted Intervention, volume 5762 of Lecture Notes in Computer Science, pages 283–290, 2009.

[5]

L. Chen. Mesh Smoothing Schemes based on Optimal Delaunay Triangulations. In Proceedings of 13th International Meshing Roundtable, pages 109–120, 2004.

[6]

Siu-Wing Cheng, Tamal K. Dey, Herbert Edelsbrunner, Michael A. Facello, and Shang-Hua Teng. Sliver exudation. J. ACM, 47(5):883–904, 2000.

[7]

S.-W. Cheng, T. K. Dey, and J. A. Levine. A practical Delaunay meshing algorithm for a large class of domains. In Meshing Roundtable, pages 477–494, 2007.

[8]

Siu-Wing Cheng, Tamal K. Dey, and Edgar A. Ramos. Delaunay refinement for piecewise smooth complexes. In SODA, pages 1096–1105, Philadelphia, PA, USA, 2007.

[9]

L. P. Chew. Guaranteed-quality mesh generation for curved surfaces. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 274–280, 1993.

[10]

Q. Du and D. Wang. Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations. International Journal for Numerical Methods in Engineering, 56:1355–1373, 2002.

[11]

Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi Tessellations: Applications and Algorithms. SIAM review, 41(4):637–676, 1999.

[12]

Pascal Frey. MEDIT : An interactive Mesh visualization Software. Technical Report RT-0253, INRIA, December 2001.

[13]

Steve Oudot, Laurent Rineau, and Mariette Yvinec. Meshing volumes bounded by smooth surfaces. In Proc. 14th International Meshing Roundtable, pages 203–219, 2005.

[14]

Laurent Rineau and Mariette Yvinec. A generic software design for Delaunay refinement meshing. Comput. Geom. Theory Appl., 38:100–110, 2007.

[15]

J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J. Algorithms, 18:548–585, 1995.

[16]

Jonathan R. Shewchuk. Tetrahedral mesh generation by Delaunay refinement. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 86–95, 1998.

[17]

Jane Tournois, Rahul Srinivasan, and Pierre Alliez. Perturbing slivers in 3D Delaunay meshes. In Proceedings of the 18th International Meshing Roundtable, october 2009.

[18]

Jane Tournois, Camille Wormser, Pierre Alliez, and Mathieu Desbrun. Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation. ACM Transactions on Graphics, 28(3):75:1–75:9, 2009. SIGGRAPH '2009 Conference Proceedings.

[19]

Jane Tournois. Optimisation de maillages. Thèse de doctorat en sciences, Université Nice Sophia-Antipolis, Nice, France, 2009.