\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13.2 - 3D Periodic Mesh Generation
Bibliography
[1]

Jean-Daniel Boissonnat and Steve Oudot. Provably good sampling and meshing of surfaces. Graphical Models, 67:405–451, 2005.

[2]

S.-W. Cheng, T. K. Dey, and J. A. Levine. A practical Delaunay meshing algorithm for a large class of domains. In Meshing Roundtable, pages 477–494, 2007.

[3]

Siu-Wing Cheng, Tamal K. Dey, and Edgar A. Ramos. Delaunay refinement for piecewise smooth complexes. In SODA, pages 1096–1105, Philadelphia, PA, USA, 2007.

[4]

L. P. Chew. Guaranteed-quality mesh generation for curved surfaces. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 274–280, 1993.

[5]

Pascal Frey. MEDIT : An interactive Mesh visualization Software. Technical Report RT-0253, INRIA, December 2001.

[6]

Aymeric Pellé and Monique Teillaud. Periodic meshes for the CGAL library. In International Meshing Roundtable, October 2014.

[7]

J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J. Algorithms, 18:548–585, 1995.

[8]

Jonathan R. Shewchuk. Tetrahedral mesh generation by Delaunay refinement. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 86–95, 1998.