\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13.2 - dD Triangulations
triangulation.cpp
#if defined(__GNUC__) && defined(__GNUC_MINOR__) && (__GNUC__ <= 4) && (__GNUC_MINOR__ < 4)
#include <iostream>
int main()
{
std::cerr << "NOTICE: This test requires G++ >= 4.4, and will not be compiled." << std::endl;
}
#else
#include <CGAL/Epick_d.h>
#include <CGAL/point_generators_d.h>
#include <CGAL/Triangulation.h>
#include <CGAL/algorithm.h>
#include <CGAL/assertions.h>
#include <iostream>
#include <iterator>
#include <vector>
typedef CGAL::Triangulation<K> Triangulation;
int main()
{
const int D = 5; // we work in Euclidean 5-space
const int N = 100; // we will insert 100 points
// - - - - - - - - - - - - - - - - - - - - - - - - STEP 1
CGAL::Random_points_in_cube_d<Triangulation::Point> rand_it(D, 1.0);
std::vector<Triangulation::Point> points;
CGAL::cpp11::copy_n(rand_it, N, std::back_inserter(points));
Triangulation t(D); // create triangulation
CGAL_assertion(t.empty());
t.insert(points.begin(), points.end()); // compute triangulation
CGAL_assertion( t.is_valid() );
// - - - - - - - - - - - - - - - - - - - - - - - - STEP 2
typedef Triangulation::Face Face;
typedef std::vector<Face> Faces;
Faces edges;
std::back_insert_iterator<Faces> out(edges);
t.tds().incident_faces(t.infinite_vertex(), 1, out);
// collect faces of dimension 1 (edges) incident to the infinite vertex
std::cout << "There are " << edges.size()
<< " vertices on the convex hull." << std::endl;
#include "triangulation1.cpp" // See below
#include "triangulation2.cpp"
return 0;
}
#endif