\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - Algebraic Kernel
Algebraic_kernel_d/Construct_algebraic_real_1.cpp
// $URL$
// $Id$
#include <CGAL/basic.h>
#ifdef CGAL_USE_MPFI
#include <CGAL/Algebraic_kernel_d_1.h>
#include <CGAL/Gmpz.h>
#include <vector>
#include <iostream>
typedef AK::Polynomial_1 Polynomial_1;
typedef AK::Algebraic_real_1 Algebraic_real_1;
typedef AK::Coefficient Coefficient;
typedef AK::Bound Bound;
typedef AK::Multiplicity_type Multiplicity_type;
int main(){
AK ak; // an object of
AK::Construct_algebraic_real_1 construct_algreal_1 = ak.construct_algebraic_real_1_object();
std::cout << "Construct from int : " << construct_algreal_1(int(2)) << "\n";
std::cout << "Construct from Coefficient : " << construct_algreal_1(Coefficient(2)) << "\n";
std::cout << "Construct from Bound : " << construct_algreal_1(Bound(2)) << "\n\n";
Polynomial_1 x = CGAL::shift(AK::Polynomial_1(1),1); // the monomial x
std::cout << "Construct by index : "
<< construct_algreal_1(x*x-2,1) << "\n"
<< to_double(construct_algreal_1(x*x-2,1)) << "\n";
std::cout << "Construct by isolating interval : "
<< construct_algreal_1(x*x-2,Bound(0),Bound(2)) << "\n"
<< to_double(construct_algreal_1(x*x-2,Bound(0),Bound(2))) << "\n\n";
return 0;
}
#else
int main(){
std::cout << "This example requires CGAL to be configured with library MPFI." << std::endl;
return 0;
}
#endif