\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - 3D Convex Hulls
Convex_hull_3/quickhull_OM_3.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/convex_hull_3.h>
#include <vector>
#include <fstream>
#include <OpenMesh/Core/IO/MeshIO.hh>
#include <OpenMesh/Core/Mesh/TriMesh_ArrayKernelT.hh>
#include <CGAL/boost/graph/graph_traits_TriMesh_ArrayKernelT.h>
typedef K::Point_3
Point_3;
typedef OpenMesh::TriMesh_ArrayKernelT</* MyTraits*/> Mesh;
int main(int argc, char* argv[])
{
std::ifstream in( (argc>1)? argv[1] : "data/cube.xyz");
std::vector<Point_3> points;
Point_3 p, n;
while(in >> p >> n){
points.push_back(p);
}
// define polyhedron to hold convex hull
Mesh poly;
// compute convex hull of non-collinear points
CGAL::convex_hull_3(points.begin(), points.end(), poly);
Mesh sm;
CGAL::convex_hull_3(points.begin(), points.end(), sm);
CGAL::write_off((argc>2)?argv[2]:"out.off", sm);
return 0;
}