\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - Geometric Object Generators
Generator/random_points_tetrahedron_and_triangle_3.cpp
#include <iostream>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Random.h>
typedef K::Point_3 Point_3;
typedef K::Triangle_3 Triangle_3;
typedef K::Tetrahedron_3 Tetrahedron_3;
int main() {
std::cout << "This example does two things:" << std::endl;
std::cout << " (i) it creates 100 random points in a triangle in 3D; and" << std::endl;
std::cout << " (ii) it creates 100 random points in a tetrahedron in 3D." << std::endl;
// The input triangle is as follows
Triangle_3 tri(Point_3(0,0,0),Point_3(1,0,0),Point_3(0,1,0));
Tetrahedron_3 tet(Point_3(0,0,0),Point_3(1,0,0),Point_3(0,1,0),Point_3(0,0,1));
// we get output points in these containers
std::vector<Point_3> points_in_tri, points_in_tet;
// creating the first generator, input is the Triangle_3 tri
Point_generator_i g_i(tri);
// creating the second generator, input is the Tetrahedron_3 tet
Point_generator_ii g_ii(tet);
// get 100 random points in tri
CGAL::cpp11::copy_n(g_i, 100, std::back_inserter(points_in_tri));
// get 100 random points in tet
CGAL::cpp11::copy_n(g_ii, 100, std::back_inserter(points_in_tet));
// Check that we have really created 100 points.
assert( points_in_tri.size() == 100);
// Check that we have really created 100 points.
assert( points_in_tet.size() == 100);
// print the first points
std::cout << "In triangle: " << points_in_tri[0] << std::endl;
std::cout << "In tetrahedron: " << points_in_tet[0] << std::endl;
return 0;
}