\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - 2D and 3D Linear Geometry Kernel
Kernel_23/MyKernel.cpp
#include <CGAL/basic.h>
#include <CGAL/Filtered_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/squared_distance_2.h>
#include <cassert>
#include "MyKernel.h"
#include "MyPointC2_iostream.h"
typedef MyKernel<double> MK;
typedef CGAL::Delaunay_triangulation_2<K> Delaunay_triangulation_2;
typedef K::Point_2 Point;
typedef K::Segment_2 Segment;
typedef K::Ray_2 Ray;
typedef K::Line_2 Line;
typedef K::Triangle_2 Triangle;
typedef K::Iso_rectangle_2 Iso_rectangle;
const int RED= 1;
const int BLACK=2;
int main()
{
Point a(0,0), b(1,0), c(1,1), d(0,1);
a.color()=RED;
b.color()=BLACK;
d.color()=RED;
Delaunay_triangulation_2 dt;
dt.insert(a);
K::Orientation_2 orientation;
orientation(a,b,c);
Point p(1,2), q;
p.color() = RED;
q.color() = BLACK;
std::cout << p << std::endl;
K::Compute_squared_distance_2 squared_distance;
std::cout << "squared_distance(a, b) == "
<< squared_distance(a, b) << std::endl;
Segment s1(p,q), s2(a, c);
K::Construct_midpoint_2 construct_midpoint_2;
Point mp = construct_midpoint_2(p,q);
std::cout << "midpoint(" << p << " , " << q << ") == " << mp << std::endl;
assert(s1.source().color() == RED);
K::Intersect_2 intersection;
intersect = intersection(s1, s2);
K::Construct_cartesian_const_iterator_2 construct_it;
K::Cartesian_const_iterator_2 cit = construct_it(a);
assert(*cit == a.x());
cit = construct_it(a,0);
cit--;
assert(*cit == a.y());
Line l1(a,b), l2(p, q);
intersection(l1, l2);
intersection(s1, l1);
Ray r1(d,b), r2(d,c);
intersection(r1, r2);
intersection(r1, l1);
Triangle t1(a,b,c), t2(a,c,d);
intersection(t1, t2);
intersection(t1, l1);
intersection(t1, s1);
intersection(t1, r1);
Iso_rectangle i1(a,c), i2(d,p);
intersection(i1, i2);
intersection(i1, s1);
intersection(i1, r1);
intersection(i1, l1);
t1.orientation();
std::cout << s1.source() << std::endl;
std::cout << t1.bbox() << std::endl;
std::cout << "done" << std::endl;
return 0;
}