\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - 2D Periodic Triangulations
Periodic_2_triangulation_2/p2t2_find_conflicts.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Periodic_2_Delaunay_triangulation_2.h>
#include <CGAL/Periodic_2_Delaunay_triangulation_traits_2.h>
#include <CGAL/point_generators_2.h>
#include <cassert>
#include <vector>
typedef Delaunay::Point Point;
typedef Delaunay::Face_handle Face_handle;
int main()
{
Delaunay T;
CGAL::Random_points_in_iso_rectangle_2<Point> rnd(Point(0, 0), Point(1, 1));
// First, make sure the triangulation is 2D.
T.insert(Point(0, 0));
T.insert(Point(.1, 0));
T.insert(Point(0, .1));
// Gets the conflict region of 100 random points
// in the Delaunay tetrahedralization
for (int i = 0; i != 100; ++i)
{
Point p = (*rnd++);
// Locate the point
Delaunay::Locate_type lt;
int li;
Face_handle f = T.locate(p, lt, li);
if (lt == Delaunay::VERTEX)
continue; // Point already exists
// Get the cells that conflict with p in a vector V,
// and a facet on the boundary of this hole in f.
std::vector<Face_handle> V;
T.get_conflicts(p,
std::back_inserter(V), // Conflict cells in V
f);
}
std::cout << "Final triangulation has " << T.number_of_vertices()
<< " vertices." << std::endl;
return 0;
}