\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - Polynomial

Classes

class  CGAL::Exponent_vector
 For a given (multivariate) monomial the vector of its exponents is called the exponent vector. More...
 
class  CGAL::Polynomial< Coeff >
 An instance of the data type Polynomial represents a polynomial \( p = a_0 + a_1*x + ...a_i*x^i\) from the ring \( \mathrm{Coeff}[x]\). More...
 
class  CGAL::Polynomial_traits_d< Polynomial_d >
 A model of concept PolynomialTraits_d More...
 
struct  CGAL::Polynomial_type_generator< T, d >
 This class template provides a convenient way to obtain the type representing a multivariate polynomial with d variables, where T is the innermost coefficient type. More...