CGAL 4.13 - dD Triangulations
|
A triangulation is a pure manifold simplicial complex. Its faces are simplices such that two of them either do not intersect or share a common face.
The triangulation classes of CGAL are designed to represent triangulations of a set of points \( A\) in \( \mathbb{R}^d\). It can be viewed as a partition of the convex hull of \( A\) into simplices whose vertices are the points of \( A\).
See the User Manual for more details.
TriangulationDataStructure
TriangulationDataStructure::FullCell
TriangulationDataStructure::Vertex
TriangulationDSVertex
TriangulationDSFullCell
TriangulationDSFace
FullCellData
TriangulationTraits
DelaunayTriangulationTraits
RegularTriangulationTraits
TriangulationVertex
TriangulationFullCell
The latter two concepts are also abbreviated respectively as TrVertex
and TrFullCell
.
CGAL::Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>
CGAL::Triangulation_ds_vertex<TriangulationDataStructure_>
CGAL::Triangulation_ds_full_cell<TriangulationDataStructure_, TriangulationDSFullCellStoragePolicy>
CGAL::Triangulation_face<TriangulationDataStructure_>
CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>
CGAL::Delaunay_triangulation<DelaunayTriangulationTraits_, TriangulationDataStructure_>
CGAL::Regular_triangulation<RegularTriangulationTraits_, TriangulationDataStructure_>
CGAL::Triangulation_vertex<TriangulationTraits_, Data, TriangulationDSVertex_>
CGAL::Triangulation_full_cell<TriangulationTraits_, Data, TriangulationDSFullCell_>
Modules | |
Concepts | |
Triangulation Classes | |
Traits Classes | |
Vertex, Face and Cell Classes | |