\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14.1 - Geometric Object Generators
Generator/random_points_on_triangle_mesh_2.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/Delaunay_mesh_face_base_2.h>
#include <CGAL/Delaunay_mesh_size_criteria_2.h>
#include <CGAL/Delaunay_mesher_2.h>
#include <CGAL/Triangulation_face_base_with_info_2.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/point_generators_2.h>
#include <iostream>
#include <fstream>
typedef CGAL::Triangulation_data_structure_2<Vb, Fb> Tds;
typedef CDT::Point Point;
typedef CGAL::Polygon_2<K> Polygon_2;
using namespace CGAL;
int main()
{
// Generated points are in that vector
std::vector<Point> points;
//Construct two non-intersecting nested polygons
::Polygon_2 polygon1;
polygon1.push_back(Point(0,0));
polygon1.push_back(Point(2,0));
polygon1.push_back(Point(2,2));
polygon1.push_back(Point(0,2));
::Polygon_2 polygon2;
polygon2.push_back(Point(4.0,-2.0));
polygon2.push_back(Point(4.0,2.0));
polygon2.push_back(Point(6.0,0.0));
//Insert the polygons into a constrained triangulation
CDT cdt;
cdt.insert_constraint(polygon1.vertices_begin(), polygon1.vertices_end(), true);
cdt.insert_constraint(polygon2.vertices_begin(), polygon2.vertices_end(), true);
// Refine the triangulation (and mark the faces as inside/outside)
CGAL::refine_Delaunay_mesh_2(cdt, Mesh_2_criteria(0.125, 0.5));
// Create the generator, input is the Triangulation_2 cdt
// Get 100 random points in cdt
CGAL::cpp11::copy_n(g, 100, std::back_inserter(points));
// Check that we have really created 100 points.
assert(points.size() == 100);
// print the first point that was generated
std::cout << points[0] << std::endl;
return 0;
}