\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14.1 - Triangulated Surface Mesh Simplification
Bibliography
[1]

Tamal Dey, Herbert Edelsbrunner, Sumanta Guha, and Dmitry Nekhayev. Topology preserving edge contraction. geometric combinatorics. Publ. Inst. Math. (Beograd) (N.S.), 66:23–45, 1999.

[2]

M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. In Proc. SIGGRAPH '97, pages 209–216, 1997.

[3]

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimization. In Proc. SIGGRAPH '93, pages 19–26, 1993.

[4]

Peter Lindstrom and Greg Turk. Fast and memory efficient polygonal simplification. In IEEE Visualization, pages 279–286, 1998.

[5]

P. Lindstrom and G. Turk. Evaluation of memoryless simplification. IEEE Transactions on Visualization and Computer Graphics, 5(2):98–115, slash 1999.

[6]

Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. Boost Graph Library. Addison-Wesley, 2002.