\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14.2 - Advancing Front Surface Reconstruction
Advancing_front_surface_reconstruction/reconstruction_structured.cpp
#include <iostream>
#include <fstream>
#include <algorithm>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Point_with_normal_3.h>
#include <CGAL/structure_point_set.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <CGAL/Advancing_front_surface_reconstruction.h>
#include <CGAL/IO/read_xyz_points.h>
#include <CGAL/disable_warnings.h>
#include <boost/lexical_cast.hpp>
typedef Kernel::Point_3 Point;
typedef std::pair<Kernel::Point_3, Kernel::Vector_3> Point_with_normal;
typedef std::vector<Point_with_normal> Pwn_vector;
typedef CGAL::First_of_pair_property_map<Point_with_normal> Point_map;
typedef CGAL::Second_of_pair_property_map<Point_with_normal> Normal_map;
// Efficient RANSAC types
<Kernel, Pwn_vector, Point_map, Normal_map> Traits;
// Point set structuring type
// Advancing front types
typedef CGAL::Triangulation_data_structure_3<LVb,LCb> Tds;
typedef Triangulation_3::Vertex_handle Vertex_handle;
// Functor to init the advancing front algorithm with indexed points
struct On_the_fly_pair{
const Pwn_vector& points;
typedef std::pair<Point, std::size_t> result_type;
On_the_fly_pair(const Pwn_vector& points) : points(points) {}
result_type
operator()(std::size_t i) const
{
return result_type(points[i].first,i);
}
};
// Specialized priority functor that favor structure coherence
template <typename Structure>
struct Priority_with_structure_coherence {
Structure& structure;
double bound;
Priority_with_structure_coherence(Structure& structure,
double bound)
: structure (structure), bound (bound)
{}
template <typename AdvancingFront, typename Cell_handle>
double operator() (AdvancingFront& adv, Cell_handle& c,
const int& index) const
{
// If perimeter > bound, return infinity so that facet is not used
if (bound != 0)
{
double d = 0;
d = sqrt(squared_distance(c->vertex((index+1)%4)->point(),
c->vertex((index+2)%4)->point()));
if(d>bound) return adv.infinity();
d += sqrt(squared_distance(c->vertex((index+2)%4)->point(),
c->vertex((index+3)%4)->point()));
if(d>bound) return adv.infinity();
d += sqrt(squared_distance(c->vertex((index+1)%4)->point(),
c->vertex((index+3)%4)->point()));
if(d>bound) return adv.infinity();
}
Facet f = {{ c->vertex ((index + 1) % 4)->info (),
c->vertex ((index + 2) % 4)->info (),
c->vertex ((index + 3) % 4)->info () }};
// facet_coherence takes values between -1 and 3, 3 being the most
// coherent and -1 being incoherent. Smaller weight means higher
// priority.
double weight = 100. * (5 - structure.facet_coherence (f));
return weight * adv.smallest_radius_delaunay_sphere (c, index);
}
};
// Advancing front type
<Triangulation_3,
Priority_with_structure_coherence<Structure> >
Reconstruction;
int main (int argc, char* argv[])
{
// Points with normals.
Pwn_vector points;
const char* fname = (argc>1) ? argv[1] : "data/cube.pwn";
// Loading point set from a file.
std::ifstream stream(fname);
if (!stream ||
std::back_inserter(points),
CGAL::parameters::point_map(Point_map()).
normal_map(Normal_map())))
{
std::cerr << "Error: cannot read file" << std::endl;
return EXIT_FAILURE;
}
std::cerr << "Shape detection... ";
Efficient_ransac ransac;
ransac.set_input(points);
ransac.add_shape_factory<Plane>(); // Only planes are useful for stucturing
// Default RANSAC parameters
Efficient_ransac::Parameters op;
op.probability = 0.05;
op.min_points = 100;
op.epsilon = (argc>2 ? boost::lexical_cast<double>(argv[2]) : 0.002);
op.cluster_epsilon = (argc>3 ? boost::lexical_cast<double>(argv[3]) : 0.02);
op.normal_threshold = 0.7;
ransac.detect(op); // Plane detection
Efficient_ransac::Plane_range planes = ransac.planes();
std::cerr << "done\nPoint set structuring... ";
Pwn_vector structured_pts;
Structure pss (points,
planes,
op.cluster_epsilon, // Same parameter as RANSAC
CGAL::parameters::point_map (Point_map()).
normal_map (Normal_map()).
for (std::size_t i = 0; i < pss.size(); ++ i)
structured_pts.push_back (pss[i]);
std::cerr << "done\nAdvancing front... ";
std::vector<std::size_t> point_indices(boost::counting_iterator<std::size_t>(0),
boost::counting_iterator<std::size_t>(structured_pts.size()));
Triangulation_3 dt (boost::make_transform_iterator(point_indices.begin(), On_the_fly_pair(structured_pts)),
boost::make_transform_iterator(point_indices.end(), On_the_fly_pair(structured_pts)));
Priority_with_structure_coherence<Structure> priority (pss,
1000. * op.cluster_epsilon); // Avoid too large facets
Reconstruction R(dt, priority);
R.run ();
std::cerr << "done\nWriting result... ";
std::vector<Facet> output;
const Reconstruction::TDS_2& tds = R.triangulation_data_structure_2();
for(Reconstruction::TDS_2::Face_iterator fit = tds.faces_begin(); fit != tds.faces_end(); ++fit)
if(fit->is_on_surface())
output.push_back (CGAL::make_array(fit->vertex(0)->vertex_3()->id(),
fit->vertex(1)->vertex_3()->id(),
fit->vertex(2)->vertex_3()->id()));
std::ofstream f ("out.off");
f << "OFF\n" << structured_pts.size () << " " << output.size() << " 0\n"; // Header
for (std::size_t i = 0; i < structured_pts.size (); ++ i)
f << structured_pts[i].first << std::endl;
for (std::size_t i = 0; i < output.size (); ++ i)
f << "3 "
<< output[i][0] << " "
<< output[i][1] << " "
<< output[i][2] << std::endl;
std::cerr << "all done\n" << std::endl;
f.close();
return 0;
}