\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14.2 - 3D Alpha Shapes
Alpha_shapes_3/ex_alpha_shapes_exact_alpha.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Alpha_shape_3.h>
#include <CGAL/Alpha_shape_cell_base_3.h>
#include <CGAL/Alpha_shape_vertex_base_3.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <cassert>
#include <fstream>
#include <list>
typedef CGAL::Tag_true Alpha_cmp_tag;
//We use CGAL::Default to skip the complete declaration of base classes
typedef CGAL::Triangulation_data_structure_3<Vb,Fb> Tds;
//Alpha shape with ExactAlphaComparisonTag set to true (note that the tag is also
//set to true for Vb and Fb)
typedef Gt::Point_3 Point;
int main()
{
//Set of points for which the alpha shapes cannot be computed with
//a floating point alpha value (on certain platforms)
std::list<Point> lp;
lp.push_back(Point(49.2559,29.1767,6.7723));
lp.push_back(Point(49.3696,31.4775,5.33777));
lp.push_back(Point(49.4264,32.6279,4.6205));
lp.push_back(Point(49.3127,30.3271,6.05503));
// compute alpha shape
Alpha_shape_3 as(lp.begin(),lp.end(),0,Alpha_shape_3::GENERAL);
return 0;
}