\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14.2 - Linear and Quadratic Programming Solver
QP_solver/first_nonnegative_lp_from_iterators.cpp
// example: construct a nonnegative linear program from given iterators
// the LP below is the first nonnegative linear program example
// in the user manual
#include <iostream>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>
// choose exact integral type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif
// program and solution types
<int**, // for A
int*, // for b
int*> // for c
Program;
int main() {
int Ax[] = {1, -1}; // column for x
int Ay[] = {1, 2}; // column for y
int* A[] = {Ax, Ay}; // A comes columnwise
int b[] = {7, 4}; // right-hand side
r( CGAL::SMALLER); // constraints are "<="
int c[] = {0, -32};
// now construct the linear program; the first two parameters are
// the number of variables and the number of constraints (rows of A)
Program lp (2, 2, A, b, r, c); // constant term defaults to 0
// solve the program, using ET as the exact type
// output solution
std:: cout << s;
return 0;
}