\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14.3 - 2D and Surface Function Interpolation
Interpolation/linear_interpolation_of_vector_3.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/Interpolation_traits_2.h>
#include <CGAL/natural_neighbor_coordinates_2.h>
#include <CGAL/interpolation_functions.h>
typedef CGAL::Delaunay_triangulation_2<K> Delaunay_triangulation;
typedef K::Vector_3 Vector_3;
typedef K::Point_2 Point_2;
int main()
{
Delaunay_triangulation T;
typedef std::map<Point_2, Vector_3, K::Less_xy_2> Coord_map;
typedef CGAL::Data_access<Coord_map> Value_access;
Coord_map value_function;
for (int y=0 ; y<255 ; y++){
for (int x=0 ; x<255 ; x++){
K::Point_2 p(x,y);
T.insert(p);
value_function.insert(std::make_pair(p, Vector_3(x,y,1)));
}
}
//coordinate computation
K::Point_2 p(1.3, 0.34);
std::vector<std::pair<Point_2, double> > coords;
double norm = CGAL::natural_neighbor_coordinates_2(T, p, std::back_inserter(coords)).second;
Vector_3 res = CGAL::linear_interpolation(coords.begin(), coords.end(), norm,
Value_access(value_function));
std::cout << "Tested interpolation on " << p << " interpolation: "
<< res << std::endl;
return EXIT_SUCCESS;
}