\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14.3 - Triangulated Surface Mesh Approximation
Bibliography
[1]

David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational shape approximation. In ACM Transactions on Graphics (TOG), volume 23, pages 905–914. ACM, 2004.

[2]

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137, 1982.

[3]

Jianhua Wu and Leif Kobbelt. Structure recovery via hybrid variational surface approximation. In Computer Graphics Forum, volume 24, pages 277–284. Wiley Online Library, 2005.

[4]

Dong-Ming Yan, Wenping Wang, Yang Liu, and Zhouwang Yang. Variational mesh segmentation via quadric surface fitting. Computer-Aided Design, 44(11):1072–1082, 2012.