CGAL 4.14 - 2D Hyperbolic Delaunay Triangulations
|
The Delaunay triangulation of a set of points \(P\) in the hyperbolic plane \(\mathbb H^2\) is a two-dimensional connected simplicial complex with vertex set defined by the points \(P\).
HyperbolicDelaunayTriangulationTraits_2
describes the requirements for an interface for geometric objects, constructions, and predicates in the hyperbolic plane.HyperbolicTriangulationFaceBase_2
describes the requirements for faces of the hyperbolic Delaunay triangulation to be filtered from the faces of the Euclidean Delaunay triangulation.CGAL::Hyperbolic_Delaunay_triangulation_2
is the main class of the 2D Hyperbolic Triangulation package. It enables the constructions of Delaunay triangulations in the hyperbolic plane. It offers all the functionalities provided by CGAL::Delaunay_triangulation_2
, such as point location, insertion, and removal. Construction of the dual Voronoi diagram is also provided.CGAL::Hyperbolic_triangulation_face_base_2
Two models for the concept HyperbolicDelaunayTriangulationTraits_2
are provided:
CGAL::Hyperbolic_Delaunay_triangulation_traits_2
is by default based upon CGAL::Exact_predicates_exact_constructions_kernel_with_sqrt
and guarantees exact constructions of Delaunay triangulations and dual objects for input points with algebraic coordinates.CGAL::Hyperbolic_Delaunay_triangulation_CK_traits_2
is based upon CGAL::Circular_kernel_2
and guarantees exact constructions of Delaunay triangulations and dual objects when the input points have rational coordinates.The model CGAL::Hyperbolic_Delaunay_triangulation_CK_traits_2
is faster than CGAL::Hyperbolic_Delaunay_triangulation_traits_2
for points with rational coordinates.
Modules | |
Concepts | |
Main Classes | |
Traits Classes | |
Face Classes | |