\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14 - 2D and 3D Linear Geometry Kernel
Kernel_23/intersection_visitor.cpp
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/intersections.h>
typedef K::Point_2 Point_2;
typedef K::Segment_2 Segment_2;
typedef K::Line_2 Line_2;
typedef K::Intersect_2 Intersect_2;
struct Intersection_visitor {
typedef void result_type;
void operator()(const Point_2& p) const
{
std::cout << p << std::endl;
}
void operator()(const Segment_2& s) const
{
std::cout << s << std::endl;
}
};
int main()
{
Segment_2 seg(Point_2(0,0), Point_2(1,1));
Line_2 lin(1,-1,0);
// with C++11 support
// auto result = intersection(seg, lin);
// without C++11
result = intersection(seg, lin);
if (result) {
boost::apply_visitor(Intersection_visitor(), *result);
} else {
// no intersection
}
return 0;
}