\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14 - Triangulated Surface Mesh Simplification
Surface_mesh_simplification/edge_collapse_surface_mesh.cpp
#include <iostream>
#include <fstream>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/Surface_mesh_simplification/edge_collapse.h>
#include <CGAL/Surface_mesh_simplification/Policies/Edge_collapse/Count_ratio_stop_predicate.h>
typedef Kernel::Point_3 Point_3;
typedef CGAL::Surface_mesh<Point_3> Surface_mesh;
int main( int argc, char** argv )
{
Surface_mesh surface_mesh;
std::ifstream is(argv[1]);
is >> surface_mesh;
if (!CGAL::is_triangle_mesh(surface_mesh)){
std::cerr << "Input geometry is not triangulated." << std::endl;
return EXIT_FAILURE;
}
// In this example, the simplification stops when the number of undirected edges
// drops below 10% of the initial count
SMS::Count_ratio_stop_predicate<Surface_mesh> stop(0.1);
int r = SMS::edge_collapse(surface_mesh, stop);
std::cout << "\nFinished...\n" << r << " edges removed.\n"
<< surface_mesh.number_of_edges() << " final edges.\n";
std::ofstream os( argc > 2 ? argv[2] : "out.off" );
os.precision(17);
os << surface_mesh;
return EXIT_SUCCESS;
}