\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.3 - Principal Component Analysis
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages

The function barycenter() computes the barycenter (weighted center of mass) of a set of 2D or 3D weighted points.

The weight associated to each point is specified using a std::pair storing the point and its weight.

There is a set of overloaded barycenter functions for 2D and 3D weighted points. The user can also optionally pass an explicit kernel, in case the default, based on Kernel_traits is not sufficient. The dimension is also deduced automatically.

See Also
CGAL::centroid()
CGAL::barycenter() (Linear Kernel)

Functions

Deduced CGAL::barycenter (InputIterator first, InputIterator beyond)
 computes the barycenter of a non-empty set of 2D or 3D weighted points. More...
 
Deduced CGAL::barycenter (InputIterator first, InputIterator beyond, const K &k)
 computes the barycenter of a non-empty set of 2D or 3D weighted points. More...