\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.4 - 2D Arrangements
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Arrangement_on_surface_2/bgl_primal_adapter.cpp
// Adapting an arrangement to a BGL graph.
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/graph_traits_Arrangement_2.h>
#include <CGAL/Arr_vertex_index_map.h>
#include <climits>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#if BOOST_VERSION > 104000
#include <boost/property_map/vector_property_map.hpp>
#else
#include <boost/vector_property_map.hpp>
#endif
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;
// A functor used to compute the length of an edge.
class Edge_length_func
{
public:
// Boost property type definitions:
typedef boost::readable_property_map_tag category;
typedef double value_type;
typedef value_type reference;
typedef Arrangement_2::Halfedge_handle key_type;
double operator()(Arrangement_2::Halfedge_handle e) const
{
const double x1 = CGAL::to_double (e->source()->point().x());
const double y1 = CGAL::to_double (e->source()->point().y());
const double x2 = CGAL::to_double (e->target()->point().x());
const double y2 = CGAL::to_double (e->target()->point().y());
const double diff_x = x2 - x1;
const double diff_y = y2 - y1;
return std::sqrt(diff_x*diff_x + diff_y*diff_y);
}
};
double get(Edge_length_func edge_length, Arrangement_2::Halfedge_handle e)
{
return edge_length(e);
}
/* The folowing is a workaround for a bug in the BGL upto and including version
* 103400.
*
* Unfortunately some of the calls to the get() function below from the BGL
* code are qualified with the boost namespace, while others are not. For The
* qualified calls the compiler naturally looks for the definition of the
* function in boost namespace. For the other calls it searches the CGAL
* namespace according to ADL (Koenig Lookup), as the type of the 1st
* parameter is in CGAL namespace.
*
* One way to get around it is to provide 2 similar functions that do the
* same thing. One in CGAL namespace provided in CGAL/Arr_vertex_map.h, and
* the other in boost namespace below. The signature of the latter is slightly
* changed to avoid redefinition. The type of its 1st parameter is defined in
* boost namespace, and is a simple derivation of the 1st parameter of the
* CGAL::get() function.
*/
namespace boost {
template <typename Arrangement_2>
class Arr_vertex_index_map_boost :
public CGAL::Arr_vertex_index_map<Arrangement_2>
{
public:
Arr_vertex_index_map_boost() : Base() {}
Arr_vertex_index_map_boost(Base & other) :
CGAL::Arr_vertex_index_map<Arrangement_2>(other)
{}
};
template<class Arrangement>
unsigned int
get(const boost::Arr_vertex_index_map_boost<Arrangement> & index_map,
typename Arrangement::Vertex_handle v)
{
static_cast<const CGAL::Arr_vertex_index_map<Arrangement> &>(index_map);
return CGAL::get<Arrangement>(index_map_tmp, v);
}
}
int main()
{
Arrangement_2 arr;
// Construct an arrangement of seven intersecting line segments.
// We keep a handle for the vertex v_0 that corresponds to the point (1,1).
Arrangement_2::Halfedge_handle e =
insert_non_intersecting_curve (arr, Segment_2 (Point_2 (1, 1),
Point_2 (7, 1)));
Arrangement_2::Vertex_handle v0 = e->source();
insert (arr, Segment_2 (Point_2 (1, 1), Point_2 (3, 7)));
insert (arr, Segment_2 (Point_2 (1, 4), Point_2 (7, 1)));
insert (arr, Segment_2 (Point_2 (2, 2), Point_2 (9, 3)));
insert (arr, Segment_2 (Point_2 (2, 2), Point_2 (4, 4)));
insert (arr, Segment_2 (Point_2 (7, 1), Point_2 (9, 3)));
insert (arr, Segment_2 (Point_2 (3, 7), Point_2 (9, 3)));
// Create a mapping of the arrangement vertices to indices.
boost::Arr_vertex_index_map_boost<Arrangement_2> index_map(index_map_tmp);
// Perform Dijkstra's algorithm from the vertex v0.
Edge_length_func edge_length;
boost::vector_property_map<double, boost::Arr_vertex_index_map_boost<Arrangement_2> > dist_map(static_cast<unsigned int>(arr.number_of_vertices()), index_map);
boost::dijkstra_shortest_paths(arr, v0,
boost::vertex_index_map(index_map).
weight_map(edge_length).
distance_map(dist_map));
// Print the results:
Arrangement_2::Vertex_iterator vit;
std::cout << "The distances of the arrangement vertices from ("
<< v0->point() << ") :" << std::endl;
for (vit = arr.vertices_begin(); vit != arr.vertices_end(); ++vit)
std::cout << "(" << vit->point() << ") at distance "
<< dist_map[vit] << std::endl;
return 0;
}