\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.4 - Triangulated Surface Mesh Simplification
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Surface_mesh_simplification/edge_collapse_constrain_sharp_edges.cpp
#include <iostream>
#include <fstream>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/Surface_mesh_simplification/HalfedgeGraph_Polyhedron_3.h>
#include <CGAL/Surface_mesh_simplification/edge_collapse.h>
#include <CGAL/Surface_mesh_simplification/Policies/Edge_collapse/Constrained_placement.h>
#include <CGAL/Surface_mesh_simplification/Policies/Edge_collapse/Midpoint_placement.h>
#include <CGAL/Surface_mesh_simplification/Policies/Edge_collapse/Count_stop_predicate.h>
#include <CGAL/Unique_hash_map.h>
#include <CGAL/Mesh_3/dihedral_angle_3.h>
#include <CGAL/property_map.h>
#include <cmath>
typedef Kernel::Point_3 Point_3;
typedef CGAL::Polyhedron_3<Kernel> Surface_mesh;
typedef boost::graph_traits<Surface_mesh const>::edge_descriptor edge_descriptor;
namespace SMS = CGAL::Surface_mesh_simplification ;
typedef Surface_mesh::Facet_iterator Facet_iterator;
typedef Surface_mesh::Halfedge_handle Halfedge_handle;
typedef Surface_mesh::Halfedge_iterator Halfedge_iterator;
//
// BGL property map which indicates whether an edge is marked as non-removable
//
struct Constrained_edge_map : public boost::put_get_helper<bool,Constrained_edge_map>
{
typedef boost::readable_property_map_tag category;
typedef bool value_type;
typedef bool reference;
typedef edge_descriptor key_type;
Constrained_edge_map(const CGAL::Unique_hash_map<key_type,bool>& aConstraints)
: mConstraints(aConstraints) {}
reference operator[](key_type const& e) const { return is_constrained(e); }
bool is_constrained( key_type const& e ) const {
return mConstraints.is_defined(e) ? mConstraints[e] : false ; }
private:
const CGAL::Unique_hash_map<key_type,bool>& mConstraints;
};
int main( int argc, char** argv )
{
CGAL::Unique_hash_map<edge_descriptor,bool> constraint_hmap(false);
Surface_mesh surface_mesh;
if (argc!=2){
std::cerr<< "Usage: " << argv[0] << " input.off\n";
return 1;
}
std::ifstream is(argv[1]);
if(!is){
std::cerr<< "Filename provided is invalid\n";
return 1;
}
is >> surface_mesh ;
Constrained_edge_map constraints_map(constraint_hmap);
SMS::Constrained_placement<SMS::Midpoint_placement<Surface_mesh>,
Constrained_edge_map > placement(constraints_map);
// map used to check that constrained_edges and the points of its vertices
// are preserved at the end of the simplification
// Warning: the computation of the diedral angle is only an approximation and can
// be far from the real value and could influence the detection of sharp
// edges after the simplification
std::map<Surface_mesh::Halfedge_handle,std::pair<Point_3, Point_3> >constrained_edges;
std::size_t nb_sharp_edges=0;
// detect sharp edges
std::ofstream cst_output("constrained_edges.cgal");
for(Surface_mesh::Edge_iterator eb = surface_mesh.edges_begin(), ee = surface_mesh.edges_end() ; eb != ee ; ++eb )
{
if ( eb->is_border_edge() ){
++nb_sharp_edges;
constraint_hmap[eb]=true;
constraint_hmap[eb->opposite()]=true;
constrained_edges[eb]=std::make_pair( eb->opposite()->vertex()->point(),
eb->vertex()->point() );
}
else{
double angle = CGAL::Mesh_3::dihedral_angle(
eb->opposite()->vertex()->point(),
eb->vertex()->point(),
eb->next()->vertex()->point(),
eb->opposite()->next()->vertex()->point() );
if ( std::abs(angle)<100 ){
++nb_sharp_edges;
constraint_hmap[eb]=true;
constraint_hmap[eb->opposite()]=true;
constrained_edges[eb]=std::make_pair( eb->opposite()->vertex()->point(),
eb->vertex()->point() );
cst_output << "2 " << eb->opposite()->vertex()->point() << " "
<< " " << eb->vertex()->point() << "\n";
}
}
}
cst_output.close();
// Contract the surface mesh as much as possible
SMS::Count_stop_predicate<Surface_mesh> stop(0);
int r
= SMS::edge_collapse(surface_mesh
,stop
,CGAL::vertex_index_map(boost::get(CGAL::vertex_external_index,surface_mesh))
.edge_index_map (boost::get(CGAL::edge_external_index ,surface_mesh))
.edge_is_constrained_map(constraints_map)
.get_placement(placement)
);
std::cout << "\nFinished...\n" << r << " edges removed.\n"
<< (surface_mesh.size_of_halfedges()/2) << " final edges.\n" ;
std::ofstream os(argc > 2 ? argv[2] : "out.off") ; os << surface_mesh ;
std::cout << "Checking sharped edges were preserved...\n";
// check sharp edges were preserved
for(Surface_mesh::Edge_iterator eb = surface_mesh.edges_begin(), ee = surface_mesh.edges_end() ; eb != ee ; ++eb )
{
if ( eb->is_border_edge() ){
--nb_sharp_edges;
assert(
constrained_edges[eb]==std::make_pair( eb->opposite()->vertex()->point(),
eb->vertex()->point() ) );
}
else{
double angle = CGAL::Mesh_3::dihedral_angle(
eb->opposite()->vertex()->point(),
eb->vertex()->point(),
eb->next()->vertex()->point(),
eb->opposite()->next()->vertex()->point() );
if ( std::abs(angle)<100 ){
++nb_sharp_edges;
assert(
constrained_edges[eb]==std::make_pair( eb->opposite()->vertex()->point(),
eb->vertex()->point() ) );
}
}
}
std::cout << "OK\n";
std::cout << "Check that no removable edge has been forgotten..." << std::endl;
r = SMS::edge_collapse(surface_mesh
,stop
,CGAL::vertex_index_map(boost::get(CGAL::vertex_external_index, surface_mesh))
.edge_index_map (boost::get(CGAL::edge_external_index, surface_mesh))
.edge_is_constrained_map(constraints_map)
.get_placement(placement)
);
assert(r==0);
if ( r==0 )
std::cout << "OK\n";
else{
std::cout << "ERROR! " << r << " edges removed!\n";
return 1;
}
return 0;
}