\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.5.1 - Combinatorial Maps
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Combinatorial_map/map_3_simple_example.cpp
#include <CGAL/Combinatorial_map.h>
#include <CGAL/Combinatorial_map_constructors.h>
#include <iostream>
#include <cstdlib>
typedef CMap_3::Dart_const_handle Dart_const_handle;
int main()
{
CMap_3 cm;
// Create two tetrahedra.
Dart_const_handle dh1 = CGAL::make_combinatorial_tetrahedron(cm);
Dart_const_handle dh2 = CGAL::make_combinatorial_tetrahedron(cm);
// Display the combinatorial map characteristics.
cm.display_characteristics(std::cout);
std::cout<<", valid="<<cm.is_valid()<<std::endl;
unsigned int res = 0;
// Iterate over all the darts of the first tetrahedron.
// Note that CMap_3::Dart_of_orbit_range<1,2> in 3D is equivalent to
// CMap_3::Dart_of_cell_range<3>.
for (CMap_3::Dart_of_orbit_range<1,2>::const_iterator
it(cm.darts_of_orbit<1,2>(dh1).begin()),
itend(cm.darts_of_orbit<1,2>(dh1).end()); it!=itend; ++it)
++res;
std::cout<<"Number of darts of the first tetrahedron: "
<<res<<std::endl;
res = 0;
// Iterate over all the darts of the facet containing dh2.
for (CMap_3::Dart_of_orbit_range<1>::const_iterator
it(cm.darts_of_orbit<1>(dh2).begin()),
itend(cm.darts_of_orbit<1>(dh2).end()); it!=itend; ++it)
++res;
std::cout<<"Number of darts of the facet containing dh2: "
<<res<<std::endl;
return EXIT_SUCCESS;
}