\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.5 - dD Geometry Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Linear Algebra Concepts

Concepts

conceptLinearAlgebraTraits_d
 The data type LinearAlgebraTraits_d encapsulates two classes Matrix, Vector and many functions of basic linear algebra. An instance of data type Matrix is a matrix of variables of type NT. Accordingly, Vector implements vectors of variables of type NT. Most functions of linear algebra are checkable, i.e., the programs can be asked for a proof that their output is correct. For example, if the linear system solver declares a linear system \( A x = b\) unsolvable it also returns a vector \( c\) such that \( c^T A = 0\) and \( c^T b \neq 0\). More...
 
conceptMatrix
 An instance of data type Matrix is a matrix of variables of number type NT. The types Matrix and Vector together realize many functions of basic linear algebra. More...
 
conceptVector
 An instance of data type Vector is a vector of variables of number type NT. Together with the type Matrix it realizes the basic operations of linear algebra. More...