\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.5 - 3D Surface Subdivision Methods
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
3D Surface Subdivision Methods

twoheads-detail.png
Le-Jeng Andy Shiue
Subdivision methods recursively refine a control mesh and generate points approximating the limit surface. This package consists of four popular subdivision methods and their refinement hosts. Supported subdivision methods include Catmull-Clark, Loop, Doo-Sabin and sqrt(3) subdivisions. Their respective refinement hosts are Pqq, Ptq, Dqq and sqrt(3) refinements. Variations of those methods can be easily extended by substituting the geometry computation of the refinement host.


Introduced in: CGAL 3.2
BibTeX: cgal:s-ssm2-14b
License: LGPL
Windows Demo: Operations on Polyhedra
Common Demo Dlls: dlls

Classified Reference Pages

Concepts

Classes

Modules

 Concepts
 
 Subdivision Methods
 A subdivision method recursively refines a coarse mesh and generates an ever closer approximation to a smooth surface.
 

Classes

class  CGAL::CatmullClark_mask_3< Polyhedron_3 >
 A stencil determines a source neighborhood whose points contribute to the position of a refined point. More...
 
class  CGAL::DooSabin_mask_3< Polyhedron_3 >
 A stencil determines a source neighborhood whose points contribute to the position of a refined point. More...
 
class  CGAL::Loop_mask_3< Polyhedron_3 >
 A stencil determines a source neighborhood whose points contribute to the position of a refined point. More...
 
class  CGAL::Sqrt3_mask_3< Polyhedron_3 >
 A stencil determines a source neighborhood whose points contribute to the position of a refined point. More...